Improving Finality in Waves: Protocol
Enhancements and Guarantees

Alexey Kiselev
Waves Foundation
akiselev@unigsoft.ae

Abstract—Fast finality is a key advantage of modern
blockchains, as the user experience is directly affected by how
quickly blocks are finalized. In this paper, we present enhance-
ments to the Waves Proof-of-Stake protocol that improve finality
by leveraging the voting power of balances actively validating
blocks but not currently generating them. We introduce the
design of a new finality protocol, demonstrate its desirable
properties, and analyze its resilience against common attacks
and prolonged network forks.

Index Terms—Waves Blockchain, Proof-Of-Stake, PoS, Final-

ity

CONTENTS

D Introduction i 1
LA) Motivationccoiiiiiiiiiinnan.... 1
I.LB) Overview of Finality in Blockchains 1
I.C) Finality Challenges in Waves 2
) Backgroundc.oiiiiiiiiiii 2

IILA) Overview of Waves Proof-of-Stake
CONSENSUS «.oovvni e 2
II.B) Current Finality Mechanism 2
III) Design Goalsc.ooviiiiiiiiiiiiiniinan... 3
II.A) Fast and Predictable Finality 3
III.B) Security and Fork Resistance 3
III.C) Incentive Compatibility 3
III.D) Backward Compatibility 3
IV) Protocol Enhancements 3
IV.A) Explicit Generator Set 3
IV.B) Generation Commitment Transactions 3
IV.C) Active Generator Set Tracking 4
IV.D) Endorsement Mechanism 4
IV.E) Endorsement Network Message 4
IV.F) Block and Micro-block Structure Updates . . 4
IV.G) Finality Calculation 4
IV.H) Detecting Alternative Block Endorsements and
Punishing Malicious Behavior 4
V) Finality Threat Analysis 5
V.A) Passive Commitment Attack 5
V.B) Commitment Flooding 5
V.C) Endorsement Censorship 5
V.D) Self-Endorsement Domination 5
V.E) Commitment Flip-Flopping 6
VI) Simulation and Evaluation 6
VI.LA) Waves Finality Model 6
VII) Graceful Chain Splitting 6
VII.LA) How Generator Commitment Works 7
VIILB) Models ... 7

VII.C) Model Explanation 7

Sergey Nazarov
Waves Foundation
snazarov @units.network

Sasha Ivanov
Waves Foundation
sasha@waves.tech

VIL.D) Synchronized Commitments Model 7

VILLE) Randomized Commitment Start Model 7
VILF) Synchronized, Equal-Duration Commitments

Modelcooiiiiii 8

VIII) Conclusionoiiiiiiiiiiiiiiiiaanan... 8

References ... 8

I. INTRODUCTION

Finality is a fundamental concept in blockchain systems,
offering assurance that a transaction will not be reversed
once confirmed. While Waves achieves high throughput and
short block times, it currently lacks a formal mechanism to
determine when blocks become final. This leads to uncertainty
for users, developers, and systems integrating with Waves,
particularly in contexts that demand strong safety guarantees.

This paper addresses this gap by introducing an enhance-
ment to the Waves Proof-of-Stake protocol. Our approach
leverages validator commitments and endorsements to track
block support over time, enabling deterministic finality based
on measurable consensus thresholds.

We formally specify the protocol, analyze its desirable
properties, and evaluate its behavior under adversarial condi-
tions. Our findings show that the enhanced finality model
improves robustness against forks and enables practical guar-
antees for irreversible state transitions.

A. Motivation

The emergence of BFT-style consensus protocols has demon-
strated that fast finality is achievable, but often at the cost of
liveness. In contrast, classical Proof-of-Stake blockchains like
Waves prioritize continuous block production and network
responsiveness, avoiding the trade-off of halting in uncertain
conditions. Nevertheless, achieving fast and reliable finality
remains a highly desirable goal.

In this paper, we demonstrate that it is possible to attain
both: strong finality guarantees without compromising the
liveness properties of the Waves blockchain.

B. Overview of Finality in Blockchains

Finality refers to the point in time at which a block becomes
irrevocable, it can no longer be removed or reorganized from
the blockchain. Finality can be classified as probabilistic or
deterministic, and as immediate or eventual [1].

Immediate finality guarantees that once a block is appended
to a local copy of the blockchain, it is finalized instantly and
will never be reverted.

mailto:akiselev@uniqsoft.ae
mailto:snazarov@units.network
mailto:sasha@waves.tech

Deterministic immediate finality is characteristic of permis-
sioned blockchains such as Hyperledger Fabric [2], or BFT/
PBFT-based systems like Tendermint [3]. These systems
ensure strong consistency by design and do not allow forks
or chain reorganizations.

Probabilistic immediate finality can be found in some
permissionless proof-of-stake (PoS) blockchains. A prominent
example is Algorand [4], where a two-phase Byzantine
Agreement protocol ensures that a block is not produced until
quorum consensus is reached. This eliminates the possibility
of forks or reorgs while maintaining decentralization.

Blockchains with immediate finality tend to prioritize con-
sistency over availability during network partitions or faults,
in line with the CAP theorem.

In contrast, eventual finality ensures that all honest nodes
eventually agree on a common prefix of the blockchain. The
confidence in the finality of a block increases as more blocks
are added on top of it.

Most early blockchains, such as Bitcoin [5] and Ethereum
1.0 (PoW, pre-Merge) [6], offer probabilistic eventual finality.
In these systems, blocks can theoretically be reversed, but
the likelihood diminishes exponentially the deeper they are in
the chain.

A more robust variant is eventual deterministic finality,
where blocks are not finalized immediately but are guaran-
teed to become final under certain assumptions (e.g., honest
majority, network liveness). Examples include Ethereum 2.0
(PoS, post-Merge) [7], [8], Polkadot [9], [10], Celo [11], and
NEM [12].

These protocols strike a balance between deterministic
safety and practical scalability. They represent a natural
evolution from blockchains with purely probabilistic finality
toward models with stronger and more predictable guarantees.

C. Finality Challenges in Waves

The Waves blockchain currently operates as a classic proof-of-
stake (PoS) system with eventual probabilistic finality. Finality
depends on the total generating balance of the active valida-
tors (generators) participating in block production. However,
changes to this balance are only loosely constrained.

Specifically, there are two main limitations: a minimum
balance threshold required to qualify as a generator, and
a 1000-block delay before an increased generating balance
becomes effective.

As a consequence, the sudden emergence of a generator
with a large balance can significantly accelerate chain final-
ization, while the exit of a major generator can substantially
delay block finalization.

In theory, the finality of each block in the Waves blockchain
could be determined by summing the generating balance of the
block’s generator together with the balances of all generators
of subsequent blocks. If this cumulative balance exceeds 50%
of the total generating stake, the block could be considered
finalized.

In practice, however, it is not feasible to accurately compute
the total generating balance at any given time, nor is it reliable
to track the entry or exit of generators. These limitations

make such a finality assessment impractical under the current
protocol.

II. BACKGROUND

Waves operates as a classic Proof-of-Stake (PoS) blockchain,
where blocks are considered final once the cumulative balance
of generators confirming them exceeds 50% of the total
balance of all generators. At this point, no set of generators
can create an alternative chain of blocks without surpassing
this majority threshold.

Block confirmation occurs when other generators append
their blocks on top of a given block, effectively endorsing it.

A. Overview of Waves Proof-of-Stake Consensus

Waves employs a modified Proof-of-Stake (PoS) consensus
algorithm known as Fair Proof-of-Stake [13], designed to
ensure more equitable participation among validators regard-
less of stake concentration.

In this system, block generation rights are assigned proba-
bilistically based on the effective balance of each account.
However, unlike traditional PoS systems that favor large stake-
holders disproportionately, Waves introduces a mechanism
that smooths out variance and improves fairness over time.

The selection process involves generating a random “hit”
value derived from the generator’s VRF and comparing it
against a dynamically calculated target. This target is inversely
proportional to the validator’s effective balance and the time
since their last block. As a result, nodes with smaller balances
still retain meaningful chances of producing blocks if they
remain online and consistently participate.

Waves also incorporates a delayed activation policy for
stake increases (1000 blocks), preventing sudden balance
shifts from disrupting the fairness of the system.

This PoS model supports the Waves-NG protocol by en-
abling frequent micro-block production while preserving the
security and liveness guarantees of the main chain.

B. Current Finality Mechanism

In the current Waves consensus model, only the total supply
of Waves is publicly known. While it is possible to estimate
the cumulative balance of accounts that meet the minimum
threshold to qualify as generators, the exact set and combined
balance of generators actively competing to produce a block
at any given time remain unpredictable.

As a result, Waves provides only probabilistic finality.
There is always a possibility that a hidden group of generators
—holding a greater cumulative balance than the currently
active set—could construct an alternative chain. If such a
chain is eventually revealed, existing generators would be
required to accept it, resulting in a chain reorganization.

To mitigate this risk, several technical constraints have been
implemented in the reference Waves node software.

The most significant of these is a hard limit on automatic
rollbacks: nodes will not reorganize the blockchain beyond
100 blocks. While manual rollback is technically possible, it
is further restricted by the design of the node’s state storage,
which limits rollback depth to a maximum of 2000 blocks.

III. DEsigN GoOALS

A key challenge in computing finality in the Waves blockchain
is the inability to reliably determine the balance of active
generators at any given time.

To overcome this limitation, we propose the introduction of
an Explicit Generator Set, a mechanism that makes the set of
active generators and their corresponding balances explicitly
defined and easily trackable.

In the following sections, we examine how the Explicit
Generator Set contributes to enabling deterministic finality in
the Waves protocol.

A. Fast and Predictable Finality

With knowledge of the active generators’ balances, it becomes
possible to compute, for each block, the ratio between the
cumulative balance of generators that have voted for the block,
i.e., those who have produced subsequent blocks on top of it,
and the total active generating balance. Once this ratio exceeds
the threshold of 2/3, the block is considered finalized.

A finalized block is immutable and cannot be removed from
the blockchain. Consequently, chain reorganization is only
possible up to the depth of the most recently finalized block.

This approach, enabled by the Explicit Generator Set, pro-
vides predictable finality, but not necessarily fast finality. To
address this, we introduce a mechanism for additional block
endorsements by generators.

This mechanism allows any generator that did not produce
the current block but agrees with the choice of its parent block
to send an endorsement to the current block’s generator. This
effectively contributes the endorser’s balance to the block’s
cumulative support.

These additional endorsements allow finality to be reached
more quickly: if the combined balance of the block’s generator
and its endorsers exceeds 2/3 of the total active generating
balance, the parent block is considered finalized immediately.
In this way, finality can closely track the blockchain tip,
lagging behind by at most one block.

B. Security and Fork Resistance

Fast finality must not compromise the network’s ability to
continue producing new blocks. For this reason, the proposed
mechanism is intentionally designed to be optional and
supplementary. Failures in this mechanism may delay block
finalization, but they do not interfere with the ability of
generators to produce new blocks.

The only condition that could halt the network is the failure
to assemble a valid Generator Set. Even in such cases, a
fallback mode, triggered when the Generator Set is empty, can
be implemented to allow the network to continue functioning
with the additional functionality fully disabled.

Furthermore, the mechanism must preserve the network’s
ability to split in the event of severe network disruptions,
and more importantly, to merge back once those issues are
resolved. To ensure this, we introduce a well-defined proce-
dure for excluding generators from the Generator Set and
conduct simulation-based analysis to evaluate its behavior
under partition and recovery scenarios.

C. Incentive Compatibility

The introduction of the new mechanism should not interfere
with the ability of generators to earn rewards for producing
new blocks. However, generators that refuse to participate
in the block endorsement process or intentionally disrupt
its proper functioning should be subject to penalties. Such
penalties may include exclusion from the Generator Set or
financial slashing designed to disincentivize malicious or non-
cooperative behavior.

In the following section, we define the rules that active
generators are required to follow, along with the penalties for
non-compliance.

D. Backward Compatibility

The supplementary nature of the proposed Waves finality
mechanism allows the network to continue operating exactly
as it does today. In such fallback mode, block production
remains unaffected, but no explicit finality guarantees will be
provided.

This ensures that the mechanism can be adopted incremen-
tally and deactivated safely in environments where full finality
support is not yet available or desired.

IV. ProtocoL ENHANCEMENTS

The following sections provide a detailed description of the
enhancements introduced to the Waves protocol to support
eventual deterministic block finality.

A. Explicit Generator Set

To ensure transparency and predictability in block generation,
each generator wishing to participate must declare their intent
in advance.

This is accomplished through a new transaction type called
the Generation Commitment Transaction. By submitting this
transaction, the operator of a generating node requests inclu-
sion of their account in the Generator Set for an upcoming
generation period.

The Generator Set is established for a fixed-length period.
Once the period ends, the commitment expires, and the oper-
ator must submit a new Generation Commitment Transaction
to continue participating.

For convenience, each account may have up to two active
commitments at any given time: one for the current period
and one for the next. It is not possible to register for the
current period retroactively, participation must be declared in
advance for the next period.

B. Generation Commitment Transactions

The Generation Commitment Transaction has no recipient and
serves exclusively to register the sender’s intent to participate
in block generation for a future period.

Each generator must submit this transaction from their own
account to signal their commitment to the upcoming gener-
ation period.

The transaction includes the following fields:

* Version — the transaction version (e.g., 1).

* Sender Public Key — the public key of the sender.

* Generation Period Start — the block height at which

the generation period begins.

* Timestamp — the time the transaction was created.

* Fee — the transaction fee, paid exclusively in WAVES.
To be accepted, the transaction must satisfy the following
conditions:

* The sender’s generating balance at the time of validation

must exceed 1000 WAVES.

* The sender’s account must have sufficient funds to cover

both the transaction fee and the required deposit.

e The specified generation period start must correspond

exactly to the start of the next period.

e The sender must not have already submitted a commit-

ment transaction for the same period start.

C. Active Generator Set Tracking

Each node must maintain a view of the Generator Set. To do
this, it processes Generation Commitment Transactions and
includes eligible generators in the list for the current period.

For each active generator in this set, the node stores the
public key and the current generating balance. The generating
balance is recalculated at the beginning of every new block for
all generators in the list. At the same time, the total generating
balance of the set is updated.

If a generator’s balance falls below the threshold of 1000
WAVES, it loses the ability to produce and endorse blocks
until the balance is restored. The total generating balance is
adjusted accordingly.

If a generator violates any of the block endorsement rules,
it is removed from the Generator Set for the remainder of the
current period and its deposit is fully slashed.

If a generator fails to participate in block endorsements, it
forfeits a portion of its deposit proportional to its expected
level of participation. The penalty amount is calculated, and
the corresponding portion of the deposit is burned at the end
of the current period.

D. Endorsement Mechanism

Every active generator, upon receiving and validating a key-
block, must send back a signature of the parent block to the
generator of the key-block.

The key-block generator should validate the received signa-
tures against its copy of the parent block. If the signatures are
valid, the generator must include the collected signatures in a
designated field of the next micro-block.

Upon receiving such a micro-block, other generators must
validate the collected signatures, excluding their own. The
current generator may stop accepting endorsement signatures
once the cumulative balance of endorsing generators reaches
2/3 of the total generator balance or upon fully filling the
signatures block. To achieve this efficiently, the generator
can sort supporters in descending order based on their gener-
ation balance and prioritize including those with the highest
balances first.

If there are no transactions available in the transaction
pool, the generator should produce an empty micro-block
containing only endorsement signatures.

E. Endorsement Network Message

A new network message type, the Endorsement Message,
is introduced to propagate block endorsements across the
network. It consists of the following fields:
* Endorser Public Key — the public key of the generator
issuing the endorsement.
e Endorsed Block ID — the hash of the block being
endorsed.
* Endorsed Block Height — the height of the endorsed
block.
* Endorsement Signature — the digital signature gener-
ated by signing the block ID and height, proving the
authenticity of the endorsement.

F. Block and Micro-block Structure Updates

To support fast and deterministic finality, the structures of
both blocks and micro-blocks must be extended to include
endorsements.
e The Micro-block structure is updated to include all valid
endorsements collected at the time of its creation.

e The Block structure is updated to include the full set of
finalized endorsements relevant to the parent block.
These updates ensure that endorsements are reliably propa-
gated and recorded, enabling accurate finality tracking and

rule enforcement throughout the network.

G. Finality Calculation

Every validation node must calculate the Finality Stake for the
most recent blocks. If the Finality Stake of a block reaches the
Quorum Balance, defined as 2/3 of the cumulative generator
balance, the block is considered final, meaning:

* Blockchain reorganization beyond this block is prohib-

ited.

e The block cannot be excluded from the chain.

* Transactions within the block become irreversible.
The Finality Stake of a block is calculated as the sum of
its generator’s balance and all endorsement balances recorded
in the block. If a single block does not accumulate enough
Finality Stake to reach the Quorum Balance, its stake is
carried forward and added to the Finality Stake of its parent
block. This accumulation process continues up the chain until
the required quorum is met, at which point the parent block
achieves finality.

H. Detecting Alternative Block Endorsements and Punishing
Malicious Behavior

A well-behaved supporting generator must not sign multiple
conflicting blocks that reference the same parent. However,
malicious actors may attempt to endorse several alternative
blocks and propagate these endorsements to different gener-
ators.

Due to the decentralized, peer-to-peer nature of blockchain
communication, such behavior may initially go undetected. To
make it discoverable and enforceable, each block endorsement
includes the following fields:

* Supporter’s Public Key.

* Endorsed Block Height.

* Endorsed Block Hash.

* Signature (covering both height and hash).

By signing the combination of block height and block hash,
any attempt to endorse multiple conflicting blocks can later be
proven, even if the alternative blocks were not initially known.
The inclusion of the height ensures that the signer cannot
plausibly deny a conflicting endorsement once the alternative
block becomes visible to the network.

To report such violations, a new transaction type is intro-
duced: the Violation Report Transaction. This transaction
includes the conflicting endorsement and may be submitted
by any network participant.

Once a valid Violation Report Transaction is processed,
the following penalties are enforced against the offending
generator:

* Exclusion from the Generator Set: The generator’s Gen-
eration Commitment Transaction is annulled and cannot
be replaced. As a result, the generator is excluded from
the Generator Set until the end of the period specified
in the original commitment.

* Deposit Slashing: The generator’s deposit for the current
period is confiscated and awarded to the reporter of the
violation.

This rule also has implications for node operators who run
multiple backup instances using the same private key. If
these instances become active on divergent forks, they may
unintentionally endorse different blocks at the same height,
triggering the same punishment for double endorsement.

V. FiNALITY THREAT ANALYSIS

This section outlines key threats to the finality mechanism,
prioritized by severity:

* Passive Commitment Attack.

e Commitment Flooding.

¢ Endorsement Censorship.

* Self-Endorsement Domination.

e Commitment Flip-Flopping.
For each threat, potential mitigation techniques are identified
and evaluated.

A. Passive Commitment Attack

In this attack, a large balance holder submits a Generation
Commitment Transaction to participate in block generation
and validation but deliberately refrains from endorsing blocks.
This behavior disrupts finality by inflating the quorum denom-
inator without contributing to endorsement weight.

Possible Mitigations:

1) Validator Liveness Tracking: Track the number of vali-
dated (endorsed) blocks for each committed validator.
Exclude consistently inactive validators from the active
generator set. The exclusion threshold may depend on
both balance and activity, for example, accounts with
larger balances are allowed to skip fewer blocks before
being removed.

2) Commitment Deposit Slashing: Penalize inactive val-
idators by reducing their commitment deposit in pro-
portion to their validation inactivity. This discourages
passive participation and encourages active contribu-
tion to finality.

B. Commitment Flooding

An attacker with a large amount of Waves may attempt to
overwhelm the network by splitting their balance across thou-
sands of accounts and submitting Generation Commitment
Transactions from each, without any intention to generate or
validate blocks.

This behavior leads to:

¢ Increased load on tracking the generators set.

* Performance degradation during generators set verifica-

tion for each block.

¢ Potential denial-of-service (DoS) on data structures re-

lated to the generators set.
Possible Mitigations:

1) Raise the Minimum Generation Balance Threshold
Currently, the minimum generation balance is 1,000 Waves.
Increasing this threshold to 10,000 Waves would reduce the
number of potentially abusive accounts to a manageable level.

> Note: Generation balance does not affect the ability to
validate blocks. Every committed validator is expected to
endorse every new block during their commitment period.

1) Introduce a Non-Trivial Fee for Generation Commit-

ment Transactions

Introduce a balance-dependent fee model, where lower-bal-
ance commitments require proportionally higher fees. For
example, a 1M Waves commitment might require a 1 Waves
fee, whereas a 1K Waves commitment could incur a 1000
Waves fee. The fee may be refundable in cases of active and
honest participation, but burned if the account fails to generate
or validate blocks.

1) Introduce a Cap on the Generator Set Size
Impose a hard limit on the number of active generators per
block — for example, allow only the top 100 generators (by
balance) to participate in block validation. More sophisticated
prioritization can be introduced, such as using the number of
successful generation epochs as a secondary sorting criterion.

C. Endorsement Censorship

An attacker withholds endorsements from other validators
when producing a block, preventing the block from collecting
enough endorsements to finalize. However, this is not consid-
ered a serious attack, as the next block produced by another
generator can effectively finalize the entire chain retroactively.
Possible Mitigations:
1) Penalize Blocks Without Endorsements When a Gener-
ator Set Exists
If the generator set is not empty and includes other active
generators, but a block is produced without any endorsements,
the generator of such a block should be penalized. Specifically,
the generator could be removed from the active generator set
or subjected to other slashing mechanisms.

D. Self-Endorsement Domination

A network of generators endorses only blocks produced by
member nodes, while withholding endorsements from other
validators. This attack can be viewed as an attack on the
slashing mechanism of Waves Finality: if the network is large
enough and censorship is significant, it could lead to the
slashing of honest generators who are not part of the network.

Possible Mitigations:

1) Reset Validator Rating Upon Inclusion
The attacking network cannot produce blocks indefinitely
without external endorsements. Therefore, when a block
produced by a non-member includes endorsements from pre-
viously censored validators, their rating should be effectively
reset. This prevents long-term penalization of validators who
were victims of targeted censorship.

E. Commitment Flip-Flopping

An attacker attempts to repeatedly commit and revoke their
Generation Commitment to destabilize the generator set.

However, this attack is not possible because Generation
Commitment Transactions are irrevocable and can only expire
after the completion of the commitment period.

VI. SimuLATION AND EvALUATION

To evaluate the proposed finality model for Waves, we con-
ducted two simulation experiments. In the first, we evaluate
how many blocks are required to achieve finality under
conditions similar to the actual Waves MainNet balance distri-
bution.

In the second experiment, we explore different approaches
to mitigating the consequences of a long-term chain split. We
demonstrate that the proposed model can survive such situa-
tions and enable chain reunion if the conditions are resolved
within a matter of days.

A. Waves Finality Model

This model evaluates the finality process in the Waves
blockchain. By simulating the real block generation mechan-
ics, we calculate how many blocks are required to achieve
finality under modeled network conditions.

a) Blocks Data:

The block data is generated using the utility waves-—
delays—generator. This utility takes as input a list of
generator accounts with real balances captured from MainNet
in March 2025.

For each generator, a random key pair is generated and
associated with its balance. At each simulation step, a hit
source (VRF) is generated for each generator, and the delay
from the previous block is calculated and recorded in the
output file.

The block with the smallest delay is selected and stored as
the next blockchain block, while other blocks are considered
as possible candidates. In subsequent steps, the selected block
is used as the reference for generating the next blocks.

In the output file, block delays are recorded for each height
(step) and for each generator.

b) Finality Model:

Before evaluating finality, we first determine how many
alternative blocks were generated close enough to the block
with the minimum delay at each height.

A threshold of 300 milliseconds is used to filter eligible
alternative blocks. This threshold reflects the fact that blocks
and their alternatives could be received by other generators in
a different order, making them valid candidates for inclusion
in the blockchain and for receiving votes.

¢) Finality Model Simulation:

A block is considered final if it receives at least % of the
total generation balances as votes.

Generators are divided into three groups:

* Block generator: A generator that produces the block

with the minimum delay.

* Alternative generators: Generators that produce alterna-
tive blocks within the delay threshold.

* Non-participating generators: Generators whose delays
exceed the threshold and are considered non-participat-
ing in block generation at this height.

Each alternative generator receives a delay weight propor-
tional to its closeness to the minimum delay (closer = higher
weight).

Non-participating generators are sorted by balance. Their
balances are split as follows:

e The top 50% (by balance) are assigned directly to the

min delay block.

e The bottom 50% are redistributed among alternative
blocks proportionally to their delay weight.

For each alternative block, the total vote is calculated as the
sum of the generator’s own balance and the share of redis-
tributed non-participating balances.

Finally, for each block, we calculate how many additional
blocks are needed until finality is achieved. A block may only
finalize later if subsequent blocks finalize and “confirm” it.

Fig. 1 shows the number of blocks required to achieve
finalization.

20 Blocks to Finalize

Blocks Required for Finalization

100000 102000 104000 106000 108000 110000
Height

Fig. 1: Finalization: Number of Blocks Required to Achieve Finality

As you can see, the majority of blocks are finalized in 1
block. However, in cases where the network endorses multiple
competing blocks, finality is achieved within 2 blocks.

VII. GrAceErFUL CHAIN SPLITTING

In this analysis, we evaluate the scenario of an irreparable
network split. In this scenario, the network is partitioned into
two parts for a very long time. During the split, finality is
temporarily unreachable in both parts due to an insufficient
number of generators committed to generate blocks. However,
finality is expected to be restored independently in each part
after the expiration of old generator commitments.

https://github.com/alexeykiselev/waves-delays-generator
https://github.com/alexeykiselev/waves-delays-generator

A. How Generator Commitment Works

To become a generator on the Waves blockchain, an account
must hold a sufficient balance and issue a Generation
Commitment Transaction. This transaction specifies two key
parameters: the start height and the duration of the commit-
ment.

* The start height allows generators to submit their com-
mitment transaction in advance.

e The duration enforces mandatory renewal of commit-
ments, ensuring that inactive or unreachable generators
are eventually excluded from the generation process.

The duration parameter can be defined either explicitly or
implicitly. In the former case, the duration is specified within
bounds defined by lower and upper limits. In the latter case,
the duration is fixed and constant for all commitments.

B. Models

We evaluate three models for the expiration and renewal of
generator commitments:

1) Synchronized Commitments Model
This model naturally emerges at the moment the
commitment mechanism is introduced. Since the new
functionality is activated at a specific block height, all
active generators issue their first commitments to start
at the same height, but with varying durations.

2) Randomized Commitment Start Model
Over time, the initial synchronization degrades as:

e New generators join and issue commitments at
arbitrary times.
» Existing generators may miss renewal deadlines
and re-commit asynchronously.
As a result, commitment start times become naturally
randomized across the generator set.

3) Synchronized, Equal-Duration Commitments Model
In this model, all generators commit at the same start
height and use the same fixed commitment duration.
However, some may renew in advance while others
may not, leading to divergence in expiration after a
chain split.

C. Model Explanation

After the network split, the generator set is divided into two
partitions: P, (¢) and B, (t). The number of generators active
on both forks at time ¢ is given by:
I(t) = [A(t) N B(1)]
Finality becomes possible if:
I(t) <(1-f)-N

where:

e f is the required fraction for finality (e.g., f :§

in Waves).

* N is the total number of generators.
Once the intersection falls below % of the generators, the forks
become independent in terms of finality, meaning that each

can safely finalize its own chain. From this point on, rejoining
the forks becomes impossible under the finality rules.

All models are evaluated using a dataset of real MainNet
generator balances as of March 2025. This dataset is provided
in the mainnet.generators.parquet file.

D. Synchronized Commitments Model

All generators commit at block height 0, but the commitment
duration is randomly selected between 10,000 and 20,000
blocks.

0.0

5000 0 5000

10 15000 20000 25000
Blocks

Fig. 2: Probability to Regain Independent Finality (Synchronized Commit-
ments, Random Split)

08

00

5000 o 5000 10000 15000 20000 25000
Blocks since split

Fig. 3: Decay of Shared Stake Over Time (Synchronized Commitments,
Random Split)

The model shows that independent finality is achieved with
95% confidence after approximately 15,000 blocks, or about
11 days from the start of the split.

E. Randomized Commitment Start Model

Generators commit at random block heights, with commit-
ment durations randomly selected between 10,000 and 20,000
blocks.

0.0

0 5000 10000 15000 20000 25000
Blocks since split

Fig. 4: Probability to Regain Independent Finality (Randomized Starts)

ocks
at 13863 block

02

00 b

0 5000 10000 15000 20000 25000
Blocks since split

Fig. 5: Decay of Shared Stake Over Time (Randomized Starts)

In this setup, independent finality is achieved after approxi-
mately 13,000 blocks, or about 9 days, with 95% confidence.

F. Synchronized, Equal-Duration Commitments Model

In this model, all generators begin their generation periods at
the same time, and each commitment has the same fixed du-
ration (D = 10000 blocks). The variation arises from whether
or not a generator has renewed its commitment before the
network split:

» If the generator renewed for the next period, it’s gener-

ation commitment expires in 2D
e If not renewed it expires in D

Probability

0.0

0 2500 5000 7500 10000 12500 15000 17500 20000
Blocks since split

Fig. 6: Probability to Regain Finality (Equal Commitments with Probabilistic
Renewal)

10

08

02

00 -

5000 7500 10000 12500 15000 17500 20000
Blocks since split

Fig. 7: Decay of Shared Stake Over Time (Equal Commitments with Proba-
bilistic Renewal)

The simulation shows that independent finality is achieved
after approximately 16,000 blocks, or about 11 days.

VIII. CoNcLUSION

In this paper, we proposed a protocol extension to the
Waves blockchain that introduces Deterministic Finality while
preserving the system’s core properties of liveness and decen-
tralization.

By incorporating an explicit Generator Set and a light-
weight endorsement mechanism, the protocol allows nodes
to reliably track validator participation and determine finality
based on observed consensus rather than heuristics or proba-
bilistic estimates. This design enables block finalization within
one or two blocks in typical scenarios, significantly improving
user confidence and integration safety for applications built
on Waves.

To ensure robustness in adverse conditions such as long-
term network splits, we modeled the behavior of generator
commitments and demonstrated through simulation that final-
ity can be independently re-established in each fork once
outdated commitments expire. We evaluated three commit-
ment renewal models—synchronized, randomized, and syn-
chronized with equal durations—and showed that the system
recovers finality predictably within days in all cases.

The protocol is designed to be backward compatible and
failsafe: when the Generator Set is absent the blockchain
reverts to its original probabilistic behavior without risk of
consensus failure.

Overall, the proposed enhancements significantly improve
the finality guarantees of the Waves blockchain while main-
taining its performance, openness, and adaptability to real-
world network conditions.

REFERENCES

[1] E. Anceaume, R. Ludinard, B. Sericola, and L. Simon, “On Finality in
Blockchains,” arXiv preprint arXiv:2012.10172, 2020, [Online]. Avail-
able: https://arxiv.org/abs/2012.10172

[2] E. Androulaki et al, “Hyperledger Fabric: A Distributed Operat-
ing System for Permissioned Blockchains,” in Proceedings of the
Thirteenth EuroSys Conference (EuroSys '18), ACM, 2018. doi:
10.1145/3190508.3190538.

[3] E. Buchman, J. Kwon, and Z. Milosevic, “The Latest Gossip on BFT
Consensus,” arXiv preprint arXiv:1807.04938, 2018, [Online]. Avail-
able: https://arxiv.org/abs/1807.04938

[4] J. Chen and S. Micali, “Algorand: A Secure and Efficient Distributed
Ledger,” Theoretical Computer Science, vol. 777, pp. 155-183, 2019,
doi: 10.1016/j.tcs.2019.02.001.

[S] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,”
Bitcoin.org, 2008, [Online]. Available: https://bitcoin.org/bitcoin.pdf

[6] V. Buterin, “A Next Generation Smart Contract and Decentralized
Application Platform,” 2013. [Online]. Available: https://ethereum.org/
en/whitepaper/

[71 V. Buterin and V. Griffith, “Casper the Friendly Finality Gadget,” arXiv
preprint arXiv:1710.09437, 2017, [Online]. Available: https://arxiv.org/
abs/1710.09437

[8] V. Buterin, V. Griffith, and a. et\, “Gasper: Combining GHOST and
Casper for Proof-of-Stake Consensus in Ethereum 2.0,” arXiv preprint
arXiv:2003.03052, 2020, [Online]. Available: https://arxiv.org/abs/
2003.03052

[9]1 J. Burdges et al., “Overview of Polkadot and Its Design Considerations,”

arXiv preprint arXiv:2005.13456, 2020, [Online]. Available: https:/

arxiv.org/abs/2005.13456

C. Grunspan and R. Pérez-Marco, “GRANDPA: a Byzantine Finality

Gadget,” arXiv preprint arXiv:2007.01560, 2020, [Online]. Available:

https://arxiv.org/abs/2007.01560

[10]

https://arxiv.org/abs/2012.10172
https://doi.org/10.1145/3190508.3190538
https://arxiv.org/abs/1807.04938
https://doi.org/10.1016/j.tcs.2019.02.001
https://bitcoin.org/bitcoin.pdf
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/2003.03052
https://arxiv.org/abs/2003.03052
https://arxiv.org/abs/2005.13456
https://arxiv.org/abs/2005.13456
https://arxiv.org/abs/2007.01560

[11]

[12]

[13]

T. Moreton, “Consensus and Proof of Stake in the Celo Protocol,” 2019.
[Online]. Available: https://celo.org/papers/Celo__A_Multi_Asset_
Cryptographic_Protocol_for_Decentralized_Social_Payments.pdf

NEM Foundation, “NEM Technical Reference (Catapult Platform),”
2015. [Online]. Available: https://www.allcryptowhitepapers.com/nem-
whitepaper/

A. Begicheva and A. Kofman, “Fair Proof of Stake,” arXiv
preprint arXiv:1908. XXXXX, 2020, [Online]. Available: https://www.
researchgate.net/publication/335147249_Fair_Proof_of_Stake

https://celo.org/papers/Celo__A_Multi_Asset_Cryptographic_Protocol_for_Decentralized_Social_Payments.pdf
https://celo.org/papers/Celo__A_Multi_Asset_Cryptographic_Protocol_for_Decentralized_Social_Payments.pdf
https://www.allcryptowhitepapers.com/nem-whitepaper/
https://www.allcryptowhitepapers.com/nem-whitepaper/
https://www.researchgate.net/publication/335147249_Fair_Proof_of_Stake
https://www.researchgate.net/publication/335147249_Fair_Proof_of_Stake

	Introduction
	Motivation
	Overview of Finality in Blockchains
	Finality Challenges in Waves

	Background
	Overview of Waves Proof-of-Stake Consensus
	Current Finality Mechanism

	Design Goals
	Fast and Predictable Finality
	Security and Fork Resistance
	Incentive Compatibility
	Backward Compatibility

	Protocol Enhancements
	Explicit Generator Set
	Generation Commitment Transactions
	Active Generator Set Tracking
	Endorsement Mechanism
	Endorsement Network Message
	Block and Micro-block Structure Updates
	Finality Calculation
	Detecting Alternative Block Endorsements and Punishing Malicious Behavior

	Finality Threat Analysis
	Passive Commitment Attack
	Commitment Flooding
	Endorsement Censorship
	Self-Endorsement Domination
	Commitment Flip-Flopping

	Simulation and Evaluation
	Waves Finality Model
	Blocks Data
	Finality Model
	Finality Model Simulation

	Graceful Chain Splitting
	How Generator Commitment Works
	Models
	Model Explanation
	Synchronized Commitments Model
	Randomized Commitment Start Model
	Synchronized, Equal-Duration Commitments Model

	Conclusion
	References

